A204127 Symmetric matrix based on f(i,j)=(F(i+1) if i=j and 1 otherwise), where F=A000045 (Fibonacci numbers), by antidiagonals.
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 21, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
Northwest corner: 1 1 1 1 1 1 1 2 1 1 1 1 1 1 3 1 1 1 1 1 1 5 1 1 1 1 1 1 8 1 1 1 1 1 1 13
Programs
-
Mathematica
f[i_, j_] := 1; f[i_, i_] := Fibonacci[i + 1]; m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] TableForm[m[8]] (* 8x8 principal submatrix *) Flatten[Table[f[i, n + 1 - i], {n, 1, 15}, {i, 1, n}]] (* A204127 *) p[n_] := CharacteristicPolynomial[m[n], x]; c[n_] := CoefficientList[p[n], x] TableForm[Flatten[Table[p[n], {n, 1, 10}]]] Table[c[n], {n, 1, 12}] Flatten[%] (* A204128 *) TableForm[Table[c[n], {n, 1, 10}]]
Comments