This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204130 #6 Jul 12 2012 00:39:58 %S A204130 1,-1,2,-4,1,6,-16,8,-1,36,-108,69,-15,1,360,-1152,834,-230,26,-1, %T A204130 6120,-20304,15726,-4890,693,-44,1,171360,-580752,467724,-155524, %U A204130 24797,-1963,73,-1,7882560,-27057312,22300752,-7709504 %N A204130 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of f(i,j)=(L(i) if i=j and 1 otherwise) (A204129). %C A204130 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences. %D A204130 (For references regarding interlacing roots, see A202605.) %e A204130 Top of the array: %e A204130 1....-1 %e A204130 2....-4.....1 %e A204130 6....-16....8....-1 %e A204130 36...-108...69...-15...1 %t A204130 f[i_, j_] := 1; f[i_, i_] := LucasL[i]; %t A204130 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204130 TableForm[m[8]] (* 8x8 principal submatrix *) %t A204130 Flatten[Table[f[i, n + 1 - i], %t A204130 {n, 1, 15}, {i, 1, n}]] (* A204129 *) %t A204130 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204130 c[n_] := CoefficientList[p[n], x] %t A204130 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204130 Table[c[n], {n, 1, 12}] %t A204130 Flatten[%] (* A204130 *) %t A204130 TableForm[Table[c[n], {n, 1, 10}]] %Y A204130 Cf. A204129, A202605, A204016. %K A204130 tabl,sign %O A204130 1,3 %A A204130 _Clark Kimberling_, Jan 11 2012