A204132 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of f(i,j)=(2i-1 if i=j and 1 otherwise) for i>=1 and j>=1 (as in A204131).
1, -1, 2, -4, 1, 8, -20, 9, -1, 48, -136, 80, -16, 1, 384, -1184, 820, -220, 25, -1, 3840, -12608, 9784, -3160, 490, -36, 1, 46080, -158976, 134400, -49504, 9380, -952, 49, -1, 645120, -2317824, 2097024, -853440, 186704
Offset: 1
Examples
Top of the array: 1....-1 2....-4.....1 8....-20....9...-1 48...-136...80..-16...1
References
- (For references regarding interlacing roots, see A202605.)
Programs
-
Mathematica
f[i_, j_] := 1; f[i_, i_] := 2*i - 1; m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] TableForm[m[8]] (* 8x8 principal submatrix *) Flatten[Table[f[i, n + 1 - i], {n, 1, 15}, {i, 1, n}]] (* A204131 *) p[n_] := CharacteristicPolynomial[m[n], x]; c[n_] := CoefficientList[p[n], x] TableForm[Flatten[Table[p[n], {n, 1, 10}]]] Table[c[n], {n, 1, 12}] Flatten[%] (* A204132 *) TableForm[Table[c[n], {n, 1, 10}]]
Comments