This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204133 #5 Mar 30 2012 18:58:07 %S A204133 1,1,1,1,2,1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,1,1,1,8,1,1,1,1,1,1,1,1,1, %T A204133 1,1,1,1,1,1,16,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,32,1,1,1,1,1,1, %U A204133 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,64,1,1,1,1,1,1,1,1,1,1,1,1,1 %N A204133 Symmetric matrix based on f(i,j)=(2^(i-1) if i=j and 1 otherwise), by antidiagonals. %C A204133 A204133 represents the matrix M given by f(i,j)=(2^(i-1) if i=j and 1 otherwise) for i>=1 and j>=1. See A204134 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M. %e A204133 Northwest corner: %e A204133 1 1 1 1 1 %e A204133 1 2 1 1 1 %e A204133 1 1 4 1 1 %e A204133 1 1 1 6 1 %e A204133 1 1 1 1 8 %t A204133 f[i_, j_] := 1; f[i_, i_] := 2^(i - 1); %t A204133 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204133 TableForm[m[8]] (* 8x8 principal submatrix *) %t A204133 Flatten[Table[f[i, n + 1 - i], %t A204133 {n, 1, 15}, {i, 1, n}]] (* A204133 *) %t A204133 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204133 c[n_] := CoefficientList[p[n], x] %t A204133 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204133 Table[c[n], {n, 1, 12}] %t A204133 Flatten[%] (* A204134 *) %t A204133 TableForm[Table[c[n], {n, 1, 10}]] %Y A204133 Cf. A204134, A204016, A202453. %K A204133 nonn,tabl %O A204133 1,5 %A A204133 _Clark Kimberling_, Jan 11 2012