This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204134 #6 Jul 12 2012 00:39:58 %S A204134 1,-1,1,-3,1,3,-11,7,-1,21,-83,64,-15,1,315,-1287,1074,-300,31,-1, %T A204134 9765,-40527,35067,-10570,1287,-63,1,615195,-2572731,2265129,-707539, %U A204134 92653,-5313,127,-1,78129765,-327967227,291222882,-92551369 %N A204134 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of f(i,j)=(2i-1 if i=j and 1 otherwise) for i>=1 and j>=1 (as in A204131). %C A204134 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences. %D A204134 (For references regarding interlacing roots, see A202605.) %e A204134 Top of the array: %e A204134 1....-1 %e A204134 1....-3.....1 %e A204134 3....-11....7....-1 %e A204134 21...-83....64...-15...1 %t A204134 f[i_, j_] := 1; f[i_, i_] := 2^(i - 1); %t A204134 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204134 TableForm[m[8]] (* 8x8 principal submatrix *) %t A204134 Flatten[Table[f[i, n + 1 - i], %t A204134 {n, 1, 15}, {i, 1, n}]] (* A204133 *) %t A204134 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204134 c[n_] := CoefficientList[p[n], x] %t A204134 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204134 Table[c[n], {n, 1, 12}] %t A204134 Flatten[%] (* A204134 *) %t A204134 TableForm[Table[c[n], {n, 1, 10}]] %Y A204134 Cf. A204133, A202605, A204016. %K A204134 tabl,sign %O A204134 1,4 %A A204134 _Clark Kimberling_, Jan 11 2012