This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204135 #6 Jul 12 2012 00:39:58 %S A204135 1,-1,2,-4,1,8,-28,17,-1,64,-384,424,-80,1,1024,-10624,19400,-7700, %T A204135 401,-1,32768,-598016,1748224,-1225536,161618,-2084,1,2097152, %U A204135 -68550656,319410176,-363159040,95891872 %N A204135 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the Delannoy matrix (A008288). %C A204135 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences. %D A204135 (For references regarding interlacing roots, see A202605.) %e A204135 Top of the array: %e A204135 1....-1 %e A204135 2....-4.....1 %e A204135 8....-28....17....-1 %e A204135 64...-384...424...-80...1 %e A204135 The interlacing of zeros is illustrated by these zeros (truncated): %e A204135 p(1): 1 %e A204135 p(2): .58, 3.41 %e A204135 p(3): .36, 1.44, 15.19 %e A204135 p(4): .21, .87, 4.53, 74.3 %e A204135 p(5): .12, .59, 2.14, 17.22, 380.91 %t A204135 f[i_, 1] := 1; f[1, j_] := 1; %t A204135 f[i_, j_] := f[i, j - 1] + f[i - 1, j - 1] + f[i - 1, j] %t A204135 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204135 TableForm[m[8]] (* 8x8 principal submatrix *) %t A204135 Flatten[Table[f[i, n + 1 - i], %t A204135 {n, 1, 15}, {i, 1, n}]] (* Delannoy, A008288 *) %t A204135 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204135 c[n_] := CoefficientList[p[n], x] %t A204135 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204135 Table[c[n], {n, 1, 8}] %t A204135 Flatten[%] (* 204135 *) %t A204135 TableForm[Table[c[n], {n, 1, 6}]] %Y A204135 Cf. A008288, A202605, A204016. %K A204135 tabl,sign %O A204135 1,3 %A A204135 _Clark Kimberling_, Jan 12 2012