This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204143 #6 Mar 30 2012 18:58:07 %S A204143 1,2,2,3,1,3,4,2,2,4,5,2,1,2,5,6,3,2,2,3,6,7,3,2,1,2,3,7,8,4,2,2,2,2, %T A204143 4,8,9,4,3,2,1,2,3,4,9,10,5,3,2,2,2,2,3,5,10,11,5,3,2,2,1,2,2,3,5,11, %U A204143 12,6,4,3,2,2,2,2,3,4,6,12,13,6,4,3,2,2,1,2,2,3,4,6,13,14,7,4,3 %N A204143 Symmetric matrix based on f(i,j)=max(ceiling(i/j),ceiling(j/i)), by antidiagonals. %C A204143 A204143 represents the matrix M given by f(i,j)=max(ceiling(i/j),ceiling(j/i)) for i>=1 and j>=1. See A204144 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M. %e A204143 Northwest corner: %e A204143 1 2 3 4 5 6 %e A204143 2 1 2 2 3 3 %e A204143 3 2 1 2 2 2 %e A204143 4 2 2 1 2 2 %e A204143 5 3 2 2 1 2 %e A204143 6 3 2 2 2 1 %t A204143 f[i_, j_] := Max[Ceiling[i/j], Ceiling[j/i]]; %t A204143 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204143 TableForm[m[8]] (* 8x8 principal submatrix *) %t A204143 Flatten[Table[f[i, n + 1 - i], %t A204143 {n, 1, 15}, {i, 1, n}]] (* A204143 *) %t A204143 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204143 c[n_] := CoefficientList[p[n], x] %t A204143 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204143 Table[c[n], {n, 1, 12}] %t A204143 Flatten[%] (* A204144 *) %t A204143 TableForm[Table[c[n], {n, 1, 10}]] %Y A204143 Cf. A204144, A204016, A202453. %K A204143 nonn,tabl %O A204143 1,2 %A A204143 _Clark Kimberling_, Jan 11 2012