This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204144 #6 Jul 12 2012 00:39:58 %S A204144 1,-1,-3,-2,1,8,14,3,-1,-12,-42,-35,-4,1,19,95,145,73,5,-1,-20,-140, %T A204144 -338,-336,-125,-6,1,16,184,665,1037,735,205,7,-1,-16,-212,-981,-2140, %U A204144 -2381,-1320,-303,-8,1,12,200,1209,3581,5727,5021 %N A204144 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of f(i,j)=max(ceiling(i/j),ceiling(j/i)) (as in A204143). %C A204144 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences. %D A204144 (For references regarding interlacing roots, see A202605.) %e A204144 Top of the array: %e A204144 1...-1 %e A204144 -3...-2....1 %e A204144 8....14...3....-1 %e A204144 -12..-42..-35...-4....1 %t A204144 f[i_, j_] := Max[Ceiling[i/j], Ceiling[j/i]]; %t A204144 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204144 TableForm[m[8]] (* 8x8 principal submatrix *) %t A204144 Flatten[Table[f[i, n + 1 - i], %t A204144 {n, 1, 15}, {i, 1, n}]] (* A204143 *) %t A204144 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204144 c[n_] := CoefficientList[p[n], x] %t A204144 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204144 Table[c[n], {n, 1, 12}] %t A204144 Flatten[%] (* A204144 *) %t A204144 TableForm[Table[c[n], {n, 1, 10}]] %Y A204144 Cf. A204143, A202605, A204016. %K A204144 tabl,sign %O A204144 1,3 %A A204144 _Clark Kimberling_, Jan 11 2012