This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204155 #13 Dec 04 2017 02:55:16 %S A204155 1,-1,-7,-3,1,33,39,6,-1,-135,-255,-125,-10,1,513,1323,1092,305,15,-1, %T A204155 -1863,-6075,-7047,-3444,-630,-21,1,6561,25839,38610,27135,8946,1162, %U A204155 28,-1,-22599,-104247,-190593,-175230 %N A204155 Array read by rows: row n lists the coefficients of the characteristic polynomial of the n-th principal submatrix of max(2i-j, 2j-i), as in A204154. %C A204155 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences. %D A204155 (For references regarding interlacing roots, see A202605.) %H A204155 Robert Israel, <a href="/A204155/b204155.txt">Table of n, a(n) for n = 1..10010</a> (rows 1 to 140, flattened) %e A204155 Top of the array: %e A204155 1, -1; %e A204155 -7, -3, 1; %e A204155 33, 39, 6, -1; %e A204155 -135, -255, -125, -10, 1; %p A204155 f:= proc(n) local P,lambda,i; %p A204155 P:= (-1)^n*LinearAlgebra:-CharacteristicPolynomial(Matrix(n,n,(i,j) -> max(2*i-j,2*j-i)),lambda); %p A204155 seq(coeff(P,lambda,i),i=0..n); %p A204155 end proc: %p A204155 map(f, [$1..20]); # _Robert Israel_, Dec 03 2017 %t A204155 f[i_, j_] := Max[2 i - j, 2 j - i]; %t A204155 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204155 TableForm[m[8]] (* 8x8 principal submatrix *) %t A204155 Flatten[Table[f[i, n + 1 - i], %t A204155 {n, 1, 15}, {i, 1, n}]] (* A204154 *) %t A204155 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204155 c[n_] := CoefficientList[p[n], x] %t A204155 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204155 Table[c[n], {n, 1, 12}] %t A204155 Flatten[%] (* A204155 *) %t A204155 TableForm[Table[c[n], {n, 1, 10}]] %Y A204155 Cf. A204154, A202605, A204016. %K A204155 tabl,sign,look %O A204155 1,3 %A A204155 _Clark Kimberling_, Jan 12 2012