This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204156 #5 Mar 30 2012 18:58:07 %S A204156 1,4,4,7,3,7,10,6,6,10,13,9,5,9,13,16,12,8,8,12,16,19,15,11,7,11,15, %T A204156 19,22,18,14,10,10,14,18,22,25,21,17,13,9,13,17,21,25,28,24,20,16,12, %U A204156 12,16,20,24,28,31,27,23,19,15,11,15,19,23,27,31,34,30,26,22,18 %N A204156 Symmetric matrix based on f(i,j)=max(3i-j, 3j-i), by antidiagonals. %C A204156 A204156 represents the matrix M given by f(i,j)=max(3i-j, 3j-i) for i>=1 and j>=1. See A204157 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M. %e A204156 Northwest corner: %e A204156 1...4...7...10..13 %e A204156 4...3...6...9...12 %e A204156 7...6...5...8...11 %e A204156 10..9...8...7...10 %t A204156 f[i_, j_] := -1 + Max[3 i - j, 3 j - i]; %t A204156 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204156 TableForm[m[8]] (* 8x8 principal submatrix *) %t A204156 Flatten[Table[f[i, n + 1 - i], %t A204156 {n, 1, 15}, {i, 1, n}]] (* A204156 *) %t A204156 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204156 c[n_] := CoefficientList[p[n], x] %t A204156 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204156 Table[c[n], {n, 1, 12}] %t A204156 Flatten[%] (* A204157 *) %t A204156 TableForm[Table[c[n], {n, 1, 10}]] %Y A204156 Cf. A204157, A204016, A202453. %K A204156 nonn,tabl %O A204156 1,2 %A A204156 _Clark Kimberling_, Jan 12 2012