This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204157 #6 Jul 12 2012 00:39:58 %S A204157 1,-1,-13,-4,1,88,78,9,-1,-496,-704,-260,-16,1,2560,4960,3080,650,25, %T A204157 -1,-12544,-30720,-26784,-9856,-1365,-36,1,59392,175616,197120,104160, %U A204157 25872,2548,49,-1,-274432,-950272,-1304576,-901120,-327360,-59136,-4368,-64,1,1245184,4939776,8017920,6849024,3294720 %N A204157 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of max(3i-j, 3j-i), as in A204156. %C A204157 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences. %D A204157 (For references regarding interlacing roots, see A202605.) %e A204157 Top of the array: %e A204157 1....-1 %e A204157 -13...-4.....1 %e A204157 88....78....9.....-1 %e A204157 -496..-704..-260...-16...1 %t A204157 f[i_, j_] := -1 + Max[3 i - j, 3 j - i]; %t A204157 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204157 TableForm[m[8]] (* 8x8 principal submatrix *) %t A204157 Flatten[Table[f[i, n + 1 - i], %t A204157 {n, 1, 15}, {i, 1, n}]] (* A204156 *) %t A204157 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204157 c[n_] := CoefficientList[p[n], x] %t A204157 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204157 Table[c[n], {n, 1, 12}] %t A204157 Flatten[%] (* A204157 *) %t A204157 TableForm[Table[c[n], {n, 1, 10}]] %Y A204157 Cf. A204156, A202605, A204016. %K A204157 tabl,sign %O A204157 1,3 %A A204157 _Clark Kimberling_, Jan 12 2012