This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204159 #6 Jul 12 2012 00:39:58 %S A204159 1,-1,-14,-3,1,115,79,6,-1,-800,-895,-255,-10,1,5125,7875,3850,625,15, %T A204159 -1,-31250,-60875,-42075,-12180,-1295,-21,1,184375,434375,387750, %U A204159 162375,31710,2394,28,-1,-1062500,-2934375 %N A204159 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of max(3i-2j, 3j-2i), as in A204158. %C A204159 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences. %D A204159 (For references regarding interlacing roots, see A202605.) %e A204159 Top of the array: %e A204159 1.....-1 %e A204159 -14....-3......1 %e A204159 115....79.....6.....-1 %e A204159 -800...-895...-255...-10....1 %t A204159 f[i_, j_] := Max[3 i - 2 j, 3 j - 2 i]; %t A204159 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204159 TableForm[m[8]] (* 8x8 principal submatrix *) %t A204159 Flatten[Table[f[i, n + 1 - i], %t A204159 {n, 1, 15}, {i, 1, n}]] (* A204158 *) %t A204159 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204159 c[n_] := CoefficientList[p[n], x] %t A204159 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204159 Table[c[n], {n, 1, 12}] %t A204159 Flatten[%] (* A204159 *) %t A204159 TableForm[Table[c[n], {n, 1, 10}]] %Y A204159 Cf. A204158, A202605, A204016. %K A204159 tabl,sign %O A204159 1,3 %A A204159 _Clark Kimberling_, Jan 12 2012