This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204161 #6 Jul 12 2012 00:39:58 %S A204161 1,-1,3,-5,1,18,-36,12,-1,162,-360,153,-22,1,1944,-4644,2295,-435,35, %T A204161 -1,29160,-73548,40419,-9135,990,-51,1,524880,-1382184,823284,-210924, %U A204161 27720,-1953,70,-1,11022480 %N A204161 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of (3i-2 if i=j and = 0 otherwise), as in A204160. %C A204161 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences. %D A204161 (For references regarding interlacing roots, see A202605.) %e A204161 Top of the array: %e A204161 1.....-1 %e A204161 3.....-5.....1 %e A204161 18....-36....12....-1 %e A204161 162...-360...153...-22...1 %t A204161 f[i_, j_] := 1; f[i_, i_] := 2 i - 1; %t A204161 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204161 TableForm[m[8]] (* 8x8 principal submatrix *) %t A204161 Flatten[Table[f[i, n + 1 - i], %t A204161 {n, 1, 15}, {i, 1, n}]] (* A204160 *) %t A204161 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204161 c[n_] := CoefficientList[p[n], x] %t A204161 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204161 Table[c[n], {n, 1, 12}] %t A204161 Flatten[%] (* A204161 *) %t A204161 TableForm[Table[c[n], {n, 1, 10}]] %Y A204161 Cf. A204160, A202605, A204016. %K A204161 tabl,sign %O A204161 1,3 %A A204161 _Clark Kimberling_, Jan 12 2012