This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204163 #6 Jul 12 2012 00:39:58 %S A204163 1,-1,0,-2,1,0,-2,4,-1,0,-2,7,-6,1,0,-4,17,-21,9,-1,0,-8,40,-64,43, %T A204163 -12,1,0,-24,132,-244,206,-85,16,-1,0,-72,432,-904,913,-492,142,-20,1, %U A204163 0,-288,1836,-4180,4749,-3025,1118,-234,25,-1,0 %N A204163 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of (floor[(i+1)/2] if i=j and = 0 otherwise), as in A204162. %C A204163 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences. %D A204163 (For references regarding interlacing roots, see A202605.) %e A204163 Top of the array: %e A204163 1....-1 %e A204163 0....-2....1 %e A204163 0....-2....4....-1 %e A204163 0....-4....17...-21...9...1 %t A204163 f[i_, j_] := 1; f[i_, i_] := Floor[(i + 1)/2]; %t A204163 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204163 TableForm[m[8]] (* 8x8 principal submatrix *) %t A204163 Flatten[Table[f[i, n + 1 - i], %t A204163 {n, 1, 15}, {i, 1, n}]] (* A204162 *) %t A204163 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204163 c[n_] := CoefficientList[p[n], x] %t A204163 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204163 Table[c[n], {n, 1, 12}] %t A204163 Flatten[%] (* A204163 *) %t A204163 TableForm[Table[c[n], {n, 1, 10}]] %Y A204163 Cf. A204162, A202605, A204016. %K A204163 tabl,sign %O A204163 1,4 %A A204163 _Clark Kimberling_, Jan 12 2012