This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204165 #6 Jul 12 2012 00:39:59 %S A204165 1,-1,1,-3,1,-1,-2,6,-1,0,4,4,-10,1,0,0,-15,-4,15,-1,0,0,0,36,3,-21,1, %T A204165 0,0,0,0,-84,4,28,-1,0,0,0,0,0,160,-16,-36,1,0,0,0,0,0,0,-300,40,45, %U A204165 -1,0,0,0,0,0,0,0,500,-75,-55,1,0,0,0,0,0,0,0,0,-825,130 %N A204165 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of floor[(i+j)/2], as in A204164. %C A204165 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences. %D A204165 (For references regarding interlacing roots, see A202605.) %e A204165 Top of the array: %e A204165 1....-1 %e A204165 1....-3.....1 %e A204165 -1....-2.....6....-1 %e A204165 0.....4.....4....-10...1 %t A204165 f[i_, j_] := Floor[(i + j)/2]; %t A204165 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204165 TableForm[m[8]] (* 8x8 principal submatrix *) %t A204165 Flatten[Table[f[i, n + 1 - i], %t A204165 {n, 1, 15}, {i, 1, n}]] (* A204164 *) %t A204165 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204165 c[n_] := CoefficientList[p[n], x] %t A204165 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204165 Table[c[n], {n, 1, 12}] %t A204165 Flatten[%] (* A204165 *) %t A204165 TableForm[Table[c[n], {n, 1, 10}]] %Y A204165 Cf. A204164, A202605, A204016. %K A204165 tabl,sign %O A204165 1,4 %A A204165 _Clark Kimberling_, Jan 12 2012