This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204166 #5 Mar 30 2012 18:58:07 %S A204166 1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5, %T A204166 5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7, %U A204166 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8 %N A204166 Symmetric matrix based on f(i,j)=ceiling[(i+j)/2], by antidiagonals. %C A204166 A204166 represents the matrix M given by f(i,j)=ceiling[(i+j)/2] for i>=1 and j>=1. See A204167 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M. %e A204166 Northwest corner: %e A204166 1 2 2 3 3 4 4 5 %e A204166 2 2 3 3 4 4 5 5 %e A204166 2 3 3 4 4 5 5 6 %e A204166 3 3 4 4 5 5 6 6 %t A204166 f[i_, j_] := Ceiling[(i + j)/2]; %t A204166 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204166 TableForm[m[8]] (* 8x8 principal submatrix *) %t A204166 Flatten[Table[f[i, n + 1 - i], %t A204166 {n, 1, 15}, {i, 1, n}]] (* A204166 *) %t A204166 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204166 c[n_] := CoefficientList[p[n], x] %t A204166 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204166 Table[c[n], {n, 1, 12}] %t A204166 Flatten[%] (* A204167 *) %t A204166 TableForm[Table[c[n], {n, 1, 10}]] %Y A204166 Cf. A204167, A204016, A202453. %K A204166 nonn,tabl %O A204166 1,2 %A A204166 _Clark Kimberling_, Jan 12 2012