This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204167 #20 Nov 30 2021 03:48:21 %S A204167 1,-1,-2,-3,1,1,6,6,-1,0,-4,-16,-10,1,0,0,15,32,15,-1,0,0,0,-36,-60, %T A204167 -21,1,0,0,0,0,84,100,28,-1,0,0,0,0,0,-160,-160,-36,1,0,0,0,0,0,0,300, %U A204167 240,45,-1,0,0,0,0,0,0,0,-500,-350 %N A204167 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of ceiling((i+j)/2), as in A204166. %C A204167 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences. %D A204167 (For references regarding interlacing roots, see A202605.) %e A204167 Top of the array: %e A204167 1, -1 %e A204167 -2, -3, 1 %e A204167 1, 6, 6, -1 %e A204167 0, -4, -16, -10, 1 %t A204167 f[i_, j_] := Ceiling[(i + j)/2]; %t A204167 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204167 TableForm[m[8]] (* 8 X 8 principal submatrix *) %t A204167 Flatten[Table[f[i, n + 1 - i], %t A204167 {n, 1, 15}, {i, 1, n}]] (* A204166 *) %t A204167 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204167 c[n_] := CoefficientList[p[n], x] %t A204167 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204167 Table[c[n], {n, 1, 12}] %t A204167 Flatten[%] (* A204167 *) %t A204167 TableForm[Table[c[n], {n, 1, 10}]] %Y A204167 Cf. A204166, A202605, A204016. %K A204167 tabf,sign %O A204167 1,3 %A A204167 _Clark Kimberling_, Jan 12 2012 %E A204167 Definition corrected by _Georg Fischer_, Nov 29 2021