This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204168 #6 Jul 12 2012 00:39:59 %S A204168 2,-1,-1,-6,1,0,6,12,-1,0,0,-20,-20,1,0,0,0,50,30,-1,0,0,0,0,-105,-42, %T A204168 1,0,0,0,0,0,196,56,-1,0,0,0,0,0,0,-336,-72,1,0,0,0,0,0,0,0,540,90,-1, %U A204168 0,0,0,0,0,0,0,0,-825,-110,1 %N A204168 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of (i+j), as in A003057. %C A204168 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences. %D A204168 (For references regarding interlacing roots, see A202605.) %e A204168 Top of the array: %e A204168 2....-1 %e A204168 -1....-6.....1 %e A204168 0.....6.....12....-1 %e A204168 0.....0....-20....-20...1 %t A204168 f[i_, j_] := i + j; %t A204168 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204168 TableForm[m[8]] (* 8x8 principal submatrix *) %t A204168 Flatten[Table[f[i, n + 1 - i], %t A204168 {n, 1, 15}, {i, 1, n}]] (* A003057 *) %t A204168 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204168 c[n_] := CoefficientList[p[n], x] %t A204168 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204168 Table[c[n], {n, 1, 12}] %t A204168 Flatten[%] (* A204168 *) %t A204168 TableForm[Table[c[n], {n, 1, 10}]] %Y A204168 Cf. A003057, A202605, A204016. %K A204168 tabl,sign %O A204168 1,1 %A A204168 _Clark Kimberling_, Jan 12 2012