This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204170 #11 Feb 10 2023 11:56:06 %S A204170 1,-1,0,-5,1,0,0,14,-1,0,0,0,-30,1,0,0,0,0,55,-1,0,0,0,0,0,-91,1,0,0, %T A204170 0,0,0,0,140,-1,0,0,0,0,0,0,0,-204,1,0,0,0,0,0,0,0,0,285,-1,0,0,0,0,0, %U A204170 0,0,0,0,-385,1,0,0,0,0,0,0,0,0,0,0,506,-1 %N A204170 Array read by rows: row n lists the coefficients of the characteristic polynomial of the n-th principal submatrix of (i*j), as in A003991. %C A204170 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences. %C A204170 p(n,x) = x^n + (-1)^n*s(n)*x^n - 1, where s=A000330 (square pyramidal numbers). %D A204170 (For references regarding interlacing roots, see A202605.) %e A204170 Top of the array: %e A204170 1, -1; %e A204170 0, -5, 1; %e A204170 0, 0, 14, -1; %e A204170 0, 0, 0, -30, 1; %t A204170 f[i_, j_] := i*j; %t A204170 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204170 TableForm[m[8]] (* 8x8 principal submatrix *) %t A204170 Flatten[Table[f[i, n + 1 - i], %t A204170 {n, 1, 15}, {i, 1, n}]] (* A003991 *) %t A204170 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204170 c[n_] := CoefficientList[p[n], x] %t A204170 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204170 Table[c[n], {n, 1, 12}] %t A204170 Flatten[%] (* A204170 *) %t A204170 TableForm[Table[c[n], {n, 1, 10}]] %Y A204170 Cf. A003991, A202605, A204016. %K A204170 tabf,sign %O A204170 1,4 %A A204170 _Clark Kimberling_, Jan 12 2012