This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204181 #6 Mar 30 2012 18:58:08 %S A204181 1,1,1,1,3,1,1,0,0,1,1,0,5,0,1,1,0,0,0,0,1,1,0,0,7,0,0,1,1,0,0,0,0,0, %T A204181 0,1,1,0,0,0,9,0,0,0,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,11,0,0,0,0,1,1,0, %U A204181 0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,13,0,0,0,0,0,1,1,0,0,0,0,0,0 %N A204181 Symmetric matrix based on f(i,j) defined by f(i,1)=f(1,j)=1; f(i,i)= 2i-1; f(i,j)=0 otherwise; by antidiagonals. %C A204181 A204181 represents the matrix M given by f(i,j) for i>=1 and j>=1. See A204182 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M. %e A204181 Northwest corner: %e A204181 1 1 1 1 1 1 1 1 %e A204181 1 3 0 0 0 0 0 0 %e A204181 1 0 5 0 0 0 0 0 %e A204181 1 0 0 7 0 0 0 0 %e A204181 1 0 0 0 9 0 0 0 %t A204181 f[i_, j_] := 0; f[1, j_] := 1; %t A204181 f[i_, 1] := 1; f[i_, i_] := 2 i - 1; %t A204181 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204181 TableForm[m[8]] (* 8x8 principal submatrix *) %t A204181 Flatten[Table[f[i, n + 1 - i], %t A204181 {n, 1, 15}, {i, 1, n}]] (* A204181 *) %t A204181 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204181 c[n_] := CoefficientList[p[n], x] %t A204181 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204181 Table[c[n], {n, 1, 12}] %t A204181 Flatten[%] (* A204182 *) %t A204181 TableForm[Table[c[n], {n, 1, 10}]] %Y A204181 Cf. A204182, A204016, A202453. %K A204181 nonn,tabl %O A204181 1,5 %A A204181 _Clark Kimberling_, Jan 12 2012