This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204182 #6 Jul 12 2012 00:39:59 %S A204182 1,-1,2,-4,1,7,-21,9,-1,34,-146,83,-16,1,201,-1277,878,-226,25,-1, %T A204182 1266,-13504,10729,-3340,500,-36,1,6063,-167689,149971,-53679,9805, %U A204182 -967,49,-1,-44190,-2392326,2368995,-946036,199829 %N A204182 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of (f(i,j)), where f(i,1)=f(1,j)=1, f(i,i)=2i-1; f(i,j)=0 otherwise; as in A204181. %C A204182 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences. %e A204182 (For references regarding interlacing roots, see A202605.) %e A204182 Top of the array: %e A204182 1....-1 %e A204182 2....-4.....1 %e A204182 7....-21....9....-1 %e A204182 34...-146...83...-16...1 %t A204182 f[i_, j_] := 0; f[1, j_] := 1; %t A204182 f[i_, 1] := 1; f[i_, i_] := 2 i - 1; %t A204182 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204182 TableForm[m[8]] (* 8x8 principal submatrix *) %t A204182 Flatten[Table[f[i, n + 1 - i], %t A204182 {n, 1, 15}, {i, 1, n}]] (* A204181 *) %t A204182 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204182 c[n_] := CoefficientList[p[n], x] %t A204182 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204182 Table[c[n], {n, 1, 12}] %t A204182 Flatten[%] (* A204182 *) %t A204182 TableForm[Table[c[n], {n, 1, 10}]] %Y A204182 Cf. A204181, A202605, A204016. %K A204182 tabl,sign %O A204182 1,3 %A A204182 _Clark Kimberling_, Jan 12 2012