This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204184 #6 Jul 12 2012 00:39:59 %S A204184 1,-1,-2,0,1,-1,3,1,-1,2,-2,-5,0,1,1,-5,-2,6,1,-1,-2,4,9,-4,-8,0,1,-1, %T A204184 7,3,-15,-3,9,1,-1,2,-6,-13,12,21,-6,-11,0,1,1,-9,-4,28,6,-30,-4,12,1, %U A204184 -1,-2,8,17,-24,-40,24,38,-8,-14,0,1,-1,11,5 %N A204184 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of (f(i,j)), where f(i,1)=f(1,j)=1, f(i,i)=(-1)^(i-1); f(i,j)=0 otherwise; as in A204181. %C A204184 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences. %D A204184 (For references regarding interlacing roots, see A202605.) %e A204184 Top of the array: %e A204184 1..-1 %e A204184 2...0...1 %e A204184 -1...3...1..-1 %e A204184 2..-2..-5...0..1 %t A204184 f[i_, j_] := 0; f[1, j_] := 1; f[i_, 1] := 1; %t A204184 f[i_, i_] := (-1)^(i - 1); %t A204184 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204184 TableForm[m[8]] (* 8x8 principal submatrix *) %t A204184 Flatten[Table[f[i, n + 1 - i], %t A204184 {n, 1, 15}, {i, 1, n}]] (* A204183 *) %t A204184 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204184 c[n_] := CoefficientList[p[n], x] %t A204184 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204184 Table[c[n], {n, 1, 12}] %t A204184 Flatten[%] (* A204184 *) %t A204184 TableForm[Table[c[n], {n, 1, 10}]] %Y A204184 Cf. A204183, A202605, A204016. %K A204184 tabl,sign %O A204184 1,3 %A A204184 _Clark Kimberling_, Jan 12 2012