cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204198 Number of (strictly) 3-connected cubic graphs on 2n nodes.

This page as a plain text file.
%I A204198 #29 Jul 23 2023 14:27:53
%S A204198 0,1,2,4,14,57,341,2828,30468,396150,5909292,98101019,1782392646,
%T A204198 35085504243
%N A204198 Number of (strictly) 3-connected cubic graphs on 2n nodes.
%H A204198 G. Brinkmann, J. Goedgebeur and B. D. McKay, <a href="https://caagt.ugent.be/cubic/">snarkhunter</a>.
%H A204198 F. C. Bussemaker, S. Cobeljic, L. M. Cvetkovic and J. J. Seidel, <a href="http://alexandria.tue.nl/repository/books/252909.pdf">Computer investigations of cubic graphs</a>, T.H.-Report 76-WSK-01, Technological University Eindhoven, Dept. Mathematics, 1976.
%H A204198 J. P. Costalonga, R. J. Kingan, and S. R. Kingan, <a href="https://arxiv.org/abs/2012.12059">Constructing minimally 3-connected graphs</a>, arXiv:2012.12059 [math.CO], 2020-2021; Algorithms 14, no. 1: 9.
%o A204198 The snarkhunter program (see Links) has an option "C3" for (at least) 3-connectivity. So a(n) is output from "./snarkhunter X 3 n C3", where X=2n.
%Y A204198 Cf. A002851, A204199, A364404.
%K A204198 nonn,more
%O A204198 1,3
%A A204198 _N. J. A. Sloane_, Jan 12 2012
%E A204198 a(8)-a(10) from _S. R. Kingan_, Jan 08 2021
%E A204198 a(11)-a(14) from _Ed Wynn_, Jul 22 2023