This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204199 #22 Jul 23 2023 02:09:12 %S A204199 0,0,0,1,4,24,139,1046,9398,101668,1278335,18248616,290147706, %T A204199 5071909933 %N A204199 Number of (strictly) 2-connected cubic graphs on 2n nodes. %C A204199 The snarkhunter program (see Links) has options "C2" and "C3" for (at least) 2- and 3-connectivity respectively. So a(n) is the difference between the outputs from "./snarkhunter X 3 n C2" and "./snarkhunter X 3 n C3", where X=2n. - _Ed Wynn_, Jul 22 2023 %H A204199 G. Brinkmann, J. Goedgebeur and B. D. McKay, <a href="https://caagt.ugent.be/cubic/">snarkhunter</a>. %H A204199 F. C. Bussemaker, S. Cobeljic, L. M. Cvetkovic and J. J. Seidel, <a href="http://alexandria.tue.nl/repository/books/252909.pdf">Computer investigations of cubic graphs</a>, T.H.-Report 76-WSK-01, Technological University Eindhoven, Dept. Mathematics, 1976. %e A204199 From _Ed Wynn_, Jul 22 2023: (Start) %e A204199 For n=4, the unique 8-node cubic graph that is strictly 2-connected is: %e A204199 o-o %e A204199 /| |\ %e A204199 o-o o-o %e A204199 \| |/ %e A204199 o-o %e A204199 (End) %Y A204199 Cf. A002851, A204198, A364404. %K A204199 nonn,more %O A204199 1,5 %A A204199 _N. J. A. Sloane_, Jan 12 2012 %E A204199 a(8)-a(14) from _Ed Wynn_, Jul 22 2023