cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204199 Number of (strictly) 2-connected cubic graphs on 2n nodes.

This page as a plain text file.
%I A204199 #22 Jul 23 2023 02:09:12
%S A204199 0,0,0,1,4,24,139,1046,9398,101668,1278335,18248616,290147706,
%T A204199 5071909933
%N A204199 Number of (strictly) 2-connected cubic graphs on 2n nodes.
%C A204199 The snarkhunter program (see Links) has options "C2" and "C3" for (at least) 2- and 3-connectivity respectively. So a(n) is the difference between the outputs from "./snarkhunter X 3 n C2" and "./snarkhunter X 3 n C3", where X=2n. - _Ed Wynn_, Jul 22 2023
%H A204199 G. Brinkmann, J. Goedgebeur and B. D. McKay, <a href="https://caagt.ugent.be/cubic/">snarkhunter</a>.
%H A204199 F. C. Bussemaker, S. Cobeljic, L. M. Cvetkovic and J. J. Seidel, <a href="http://alexandria.tue.nl/repository/books/252909.pdf">Computer investigations of cubic graphs</a>, T.H.-Report 76-WSK-01, Technological University Eindhoven, Dept. Mathematics, 1976.
%e A204199 From _Ed Wynn_, Jul 22 2023: (Start)
%e A204199 For n=4, the unique 8-node cubic graph that is strictly 2-connected is:
%e A204199    o-o
%e A204199   /| |\
%e A204199  o-o o-o
%e A204199   \| |/
%e A204199    o-o
%e A204199 (End)
%Y A204199 Cf. A002851, A204198, A364404.
%K A204199 nonn,more
%O A204199 1,5
%A A204199 _N. J. A. Sloane_, Jan 12 2012
%E A204199 a(8)-a(14) from _Ed Wynn_, Jul 22 2023