This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204201 #12 Dec 24 2013 01:51:13 %S A204201 1,1,4,1,5,10,1,6,15,22,1,7,21,37,46,1,8,28,58,83,94,1,9,36,86,141, %T A204201 177,190,1,10,45,122,227,318,367,382,1,11,55,167,349,545,685,749,766, %U A204201 1,12,66,222,516,894,1230,1434,1515,1534,1,13,78,288,738,1410 %N A204201 Triangle based on (0,1/3,1) averaging array. %C A204201 For a<r<b, let t(1,1)=r, and for n>1, let %C A204201 t(n,1)=[a+t(n-1,1)]/2, %C A204201 t(n,n)=[b+t(n-1,n-1)]/2, %C A204201 t(n,k)=[t(n-1,k-1)+t(n-1,k)]/2 for 2<=k<=n-1. %C A204201 We call (t(n,k)) the (a,r,b) averaging array. If a and b %C A204201 are integers and r is a rational number, then multiplying %C A204201 row n of (t(n,k)) by the LCM of its denominators yields a %C A204201 triangle of integers; A204201 arises in this manner from %C A204201 (a,r,b)=(0,1/3,1). %C A204201 ... %C A204201 Guide to related arrays: %C A204201 (a,r,b).........triangle %C A204201 (0,1/2,1).......A054143 %C A204201 (0,1/3,1).......A204201 %C A204201 (0,2/3,1).......A204202 %C A204201 (0,1/4,1).......A204203 %C A204201 (0,3/4,1).......A204204 %C A204201 (0,1/5,1).......A204205 %C A204201 (1,3/2,2).......A204206 %C A204201 (1,2,3).........A204207 %F A204201 From _Philippe Deléham_, Dec 24 2013: (Start) %F A204201 T(n,n) = A033484(n-1). %F A204201 Sum{k=1..n} T(n,k) = A053220(n). %F A204201 T(n,k) = T(n-1,k)+3*T(n-1,k-1)-2*T(n-2,k-1)-2*T(n-2,k-2), T(1,1)=1, T(2,1)=1, T(2,2)=4, T(n,k)=0 if k<1 or if k>n. (End) %e A204201 The (0,1/3,1) averaging array has these first four rows: %e A204201 1/3 %e A204201 1/6....2/3 %e A204201 1/12...5/12...5/6 %e A204201 1/24...1/4....5/8...11/12. %e A204201 Multiplying those rows by 3,6,12,24, respectively: %e A204201 1 %e A204201 1...4 %e A204201 1...5...10 %e A204201 1...6...15...22 %e A204201 The first nine rows: %e A204201 1 %e A204201 1...4 %e A204201 1...5...10 %e A204201 1...6...15...22 %e A204201 1...7...21...37...46 %e A204201 1...8...28...58...83...94 %e A204201 1...9...36...86...141..177..190 %e A204201 1...10..45...122..227..318..367..382 %e A204201 1...11..55...167..349..545..685..749..766 %t A204201 a = 0; r = 1/3; b = 1; %t A204201 t[1, 1] = r; %t A204201 t[n_, 1] := (a + t[n - 1, 1])/2; %t A204201 t[n_, n_] := (b + t[n - 1, n - 1])/2; %t A204201 t[n_, k_] := (t[n - 1, k - 1] + t[n - 1, k])/2; %t A204201 u[n_] := Table[t[n, k], {k, 1, n}] %t A204201 Table[u[n], {n, 1, 5}] (* averaging array *) %t A204201 u = Table[(1/2) (1/r) 2^n*u[n], {n, 1, 12}]; %t A204201 TableForm[u] (* A204102 triangle *) %t A204201 Flatten[u] (* A204201 sequence *) %Y A204201 Cf. A204202. %K A204201 nonn,tabl %O A204201 1,3 %A A204201 _Clark Kimberling_, Jan 12 2012