cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204202 Triangle based on (0,2/3,1) averaging array.

Original entry on oeis.org

2, 2, 5, 2, 7, 11, 2, 9, 18, 23, 2, 11, 27, 41, 47, 2, 13, 38, 68, 88, 95, 2, 15, 51, 106, 156, 183, 191, 2, 17, 66, 157, 262, 339, 374, 383, 2, 19, 83, 223, 419, 601, 713, 757, 767, 2, 21, 102, 306, 642, 1020, 1314, 1470, 1524, 1535, 2, 23, 123, 408, 948
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2012

Keywords

Comments

See A204201 for a discussion of averaging arrays and related triangles

Examples

			First six rows:
2
2...5
2...7....11
2...9....18...23
2...11...27...41...47
2...13...38...68...88..95
		

Crossrefs

Cf. A204201.

Programs

  • Mathematica
    a = 0; r = 2/3; b = 1;
    t[1, 1] = r;
    t[n_, 1] := (a + t[n - 1, 1])/2;
    t[n_, n_] := (b + t[n - 1, n - 1])/2;
    t[n_, k_] := (t[n - 1, k - 1] + t[n - 1, k])/2;
    u[n_] := Table[t[n, k], {k, 1, n}]
    Table[u[n], {n, 1, 5}]   (* averaging array *)
    u = Table[(1/r) 2^n*u[n], {n, 1, 12}];
    TableForm[u]  (* A204202 triangle *)
    Flatten[u]    (* A204202 sequence *)

Formula

From Philippe Deléham, Dec 24 2013: (Start)
T(n,n) = A055010(n) = A083329(n) = A153893(n-1).
Sum_{k=1..n} T(n,k) = A066373(n+1).
T(n,k) = T(n-1,k)+3*T(n-1,k-1)-2*T(n-2,k-1)-2*T(n-2,k-2), T(1,1)=2, T(2,1)=2, T(2,2)=5, T(n,k)=0 if k<1 or if k>n. (End)