This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204203 #9 Dec 24 2013 01:53:29 %S A204203 1,1,5,1,6,13,1,7,19,29,1,8,26,48,61,1,9,34,74,109,125,1,10,43,108, %T A204203 183,234,253,1,11,53,151,291,417,487,509,1,12,64,204,442,708,904,996, %U A204203 1021,1,13,76,268,646,1150,1612,1900,2017,2045,1,14,89,344,914 %N A204203 Triangle based on (0,1/4,1) averaging array. %C A204203 See A204201 for a discussion and guide to other averaging arrays. %F A204203 From _Philippe Deléham_, Dec 24 2013: (Start) %F A204203 T(n,n) = A036563(n+1). %F A204203 Sum_{k=1..n} T(n,k) = A014480(n-1). %F A204203 T(n,k) = T(n-1,k)+3*T(n-1,k-1)-2*T(n-2,k-1)-2*T(n-2,k-2), T(1,1)=1, T(2,1)=1, T(2,2)=5, T(n,k)=0 if k<1 or if k>n. (End) %e A204203 First six rows: %e A204203 1 %e A204203 1...5 %e A204203 1...6...13 %e A204203 1...7...19...29 %e A204203 1...8...26...48...61 %e A204203 1...9...34...74...109...125 %t A204203 a = 0; r = 1/4; b = 1; t[1, 1] = r; %t A204203 t[n_, 1] := (a + t[n - 1, 1])/2; %t A204203 t[n_, n_] := (b + t[n - 1, n - 1])/2; %t A204203 t[n_, k_] := (t[n - 1, k - 1] + t[n - 1, k])/2; %t A204203 u[n_] := Table[t[n, k], {k, 1, n}] %t A204203 Table[u[n], {n, 1, 5}] (* averaging array *) %t A204203 u = Table[(1/2) (1/r) 2^n*u[n], {n, 1, 12}]; %t A204203 TableForm[u] (* A204203 triangle *) %t A204203 Flatten[u] (* A204203 sequence *) %Y A204203 Cf. A204201. %K A204203 nonn,tabl %O A204203 1,3 %A A204203 _Clark Kimberling_, Jan 12 2012