A204204 Triangle based on (0,3/4,1) averaging array.
3, 3, 7, 3, 10, 15, 3, 13, 25, 31, 3, 16, 38, 56, 63, 3, 19, 54, 94, 119, 127, 3, 22, 73, 148, 213, 246, 255, 3, 25, 95, 221, 361, 459, 501, 511, 3, 28, 120, 316, 582, 820, 960, 1012, 1023, 3, 31, 148, 436, 898, 1402, 1780, 1972, 2035, 2047, 3, 34, 179
Offset: 1
Examples
First six rows: 3 3...7 3...10...15 3...13...25...31 3...16...38...56...63 3...19...54...94...119..127
Crossrefs
Cf. A204201.
Programs
-
Mathematica
a = 0; r = 3/4; b = 1; t[1, 1] = r; t[n_, 1] := (a + t[n - 1, 1])/2; t[n_, n_] := (b + t[n - 1, n - 1])/2; t[n_, k_] := (t[n - 1, k - 1] + t[n - 1, k])/2; u[n_] := Table[t[n, k], {k, 1, n}] Table[u[n], {n, 1, 5}] (* averaging array *) u = Table[3 (1/2) (1/r) 2^n*u[n], {n, 1, 12}]; TableForm[u] (* A204204 triangle *) Flatten[u] (* A204204 sequence *)
Formula
From Philippe Deléham, Dec 24 2013: (Start)
T(n,n) = A000225(n+1).
Sum_{k=1..n} T(n,k) = A128135(n+1).
T(n,k)=T(n-1,k)+3*T(n-1,k-1)-2*T(n-2,k-1)-2*T(n-2,k-2), T(1,1)=3, T(2,1)=3, T(2,2)=7, T(n,k)=0 if k<1 or if k>n. (End)
Comments