A204205 Triangle based on (0,1/5,1) averaging array.
1, 1, 6, 1, 7, 16, 1, 8, 23, 36, 1, 9, 31, 59, 76, 1, 10, 40, 90, 135, 156, 1, 11, 50, 130, 225, 291, 316, 1, 12, 61, 180, 355, 516, 607, 636, 1, 13, 73, 241, 535, 871, 1123, 1243, 1276, 1, 14, 86, 314, 776, 1406, 1994, 2366, 2519, 2556, 1, 15, 100, 400
Offset: 1
Examples
First six rows: 1 1...6 1...7...16 1...8...23...36 1...9...31...59...76 1...10..40...90...135...156
Crossrefs
Cf. A204201.
Programs
-
Mathematica
a = 0; r = 1/5; b = 1; t[1, 1] = r; t[n_, 1] := (a + t[n - 1, 1])/2; t[n_, n_] := (b + t[n - 1, n - 1])/2; t[n_, k_] := (t[n - 1, k - 1] + t[n - 1, k])/2; u[n_] := Table[t[n, k], {k, 1, n}] Table[u[n], {n, 1, 5}] (* averaging array *) u = Table[(1/2) (1/r) 2^n*u[n], {n, 1, 12}]; TableForm[u] (* A204205 triangle *) Flatten[u] (* A204205 sequence *)
Formula
T(n,n) = A048487(n-1). - Philippe Deléham, Dec 24 2013
T(n,k) = T(n-1,k)+3*T(n-1,k-1)-2*T(n-2,k-1)-2*T(n-2,k-2), T(1,1)=1, T(2,1)=1, T(2,2)=6, T(n,k)=0 if k<1 or if k>n. - Philippe Deléham, Dec 24 2013
Comments