A204206 Triangle based on (1,3/2,2) averaging array.
3, 5, 7, 9, 12, 15, 17, 21, 27, 31, 33, 38, 48, 58, 63, 65, 71, 86, 106, 121, 127, 129, 136, 157, 192, 227, 248, 255, 257, 265, 293, 349, 419, 475, 503, 511, 513, 522, 558, 642, 768, 894, 978, 1014, 1023, 1025, 1035, 1080, 1200, 1410, 1662, 1872
Offset: 1
Examples
First six rows: 3 5...7 9...12...15 17..21...27...31 33..38...48...58...63 65..71...86...106..121..127
Crossrefs
Cf. A204201.
Programs
-
Mathematica
a = 1; r = 3/2; b = 2; t[1, 1] = r; t[n_, 1] := (a + t[n - 1, 1])/2; t[n_, n_] := (b + t[n - 1, n - 1])/2; t[n_, k_] := (t[n - 1, k - 1] + t[n - 1, k])/2; u[n_] := Table[t[n, k], {k, 1, n}] Table[u[n], {n, 1, 5}] (* averaging array *) u = Table[3 (1/2) (1/r) 2^n*u[n], {n, 1, 12}]; TableForm[u] (* A204206 triangle *) Flatten[u] (* A204206 sequence *)
Formula
From Philippe Deléham, Dec 24 2013: (Start)
T(n,n) = A000225(n+1).
Sum_{k=1..n} T(n,k) = A167667(n).
T(n,k)=T(n-1,k)+3*T(n-1,k-1)-2*T(n-2,k-1)-2*T(n-2,k-2), T(1,1)=3, T(2,1)=5, T(2,2)=7, T(n,k)=0 if k<1 or if k>n. (End)
Comments