cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204206 Triangle based on (1,3/2,2) averaging array.

Original entry on oeis.org

3, 5, 7, 9, 12, 15, 17, 21, 27, 31, 33, 38, 48, 58, 63, 65, 71, 86, 106, 121, 127, 129, 136, 157, 192, 227, 248, 255, 257, 265, 293, 349, 419, 475, 503, 511, 513, 522, 558, 642, 768, 894, 978, 1014, 1023, 1025, 1035, 1080, 1200, 1410, 1662, 1872
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2012

Keywords

Comments

See A204201 for a discussion and guide to other averaging arrays.

Examples

			First six rows:
3
5...7
9...12...15
17..21...27...31
33..38...48...58...63
65..71...86...106..121..127
		

Crossrefs

Cf. A204201.

Programs

  • Mathematica
    a = 1; r = 3/2; b = 2;
    t[1, 1] = r;
    t[n_, 1] := (a + t[n - 1, 1])/2;
    t[n_, n_] := (b + t[n - 1, n - 1])/2;
    t[n_, k_] := (t[n - 1, k - 1] + t[n - 1, k])/2;
    u[n_] := Table[t[n, k], {k, 1, n}]
    Table[u[n], {n, 1, 5}]    (* averaging array *)
    u = Table[3 (1/2) (1/r) 2^n*u[n], {n, 1, 12}];
    TableForm[u]   (* A204206 triangle *)
    Flatten[u]     (* A204206 sequence *)

Formula

From Philippe Deléham, Dec 24 2013: (Start)
T(n,n) = A000225(n+1).
Sum_{k=1..n} T(n,k) = A167667(n).
T(n,k)=T(n-1,k)+3*T(n-1,k-1)-2*T(n-2,k-1)-2*T(n-2,k-2), T(1,1)=3, T(2,1)=5, T(2,2)=7, T(n,k)=0 if k<1 or if k>n. (End)