This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204207 #15 Dec 25 2013 13:51:15 %S A204207 2,3,5,5,8,11,9,13,19,23,17,22,32,42,47,33,39,54,74,89,95,65,72,93, %T A204207 128,163,184,191,129,137,165,221,291,347,375,383,257,266,302,386,512, %U A204207 638,722,758,767,513,523,568,688,898,1150,1360,1480,1525,1535,1025 %N A204207 Triangle based on (1,2,3) averaging array. %C A204207 See A204201 for a discussion and guide to other averaging arrays. %F A204207 T(n,n) = A083329(n). - _Philippe Deléham_, Dec 24 2013 %F A204207 T(n,1) = A000051(n-1). - _Philippe Deléham_, Dec 24 2013 %F A204207 Sum_{k=1..n} T(n,k)=A036289(n). - _Philippe Deléham_, Dec 24 2013 %F A204207 T(n,k) = T(n-1,k) + 3*T(n-1,k-1) - 2*T(n-2,k-1) - 2*T(n-2,k-2), T(1,1)=2, T(2,1)=3, T(2,2)=5, T(n,k)=0 if k<1 or if k>n. - _Philippe Deléham_, Dec 24 2013 %e A204207 First six rows: %e A204207 2 %e A204207 3....5 %e A204207 5....8....11 %e A204207 9....13...19...23 %e A204207 17...22...32...42...47 %e A204207 33...39...54...74...89...95 %t A204207 a = 1; r = 2; b = 3; %t A204207 t[1, 1] = r; %t A204207 t[n_, 1] := (a + t[n - 1, 1])/2; %t A204207 t[n_, n_] := (b + t[n - 1, n - 1])/2; %t A204207 t[n_, k_] := (t[n - 1, k - 1] + t[n - 1, k])/2; %t A204207 u[n_] := Table[t[n, k], {k, 1, n}] %t A204207 Table[u[n], {n, 1, 5}] (* averaging array *) %t A204207 u = Table[2 (1/2) (1/r) 2^n*u[n], {n, 1, 12}]; %t A204207 TableForm[u] (* A204207 triangle *) %t A204207 Flatten[u] (* A204207 sequence *) %Y A204207 Cf. A204201. %K A204207 nonn,tabl %O A204207 1,1 %A A204207 _Clark Kimberling_, Jan 12 2012 %E A204207 Example corrected by _Philippe Deléham_, Dec 22 2013