A204214 Number of length 6 nonnegative integer arrays starting and ending with 0 with adjacent elements differing by no more than n.
21, 120, 404, 1025, 2181, 4116, 7120, 11529, 17725, 26136, 37236, 51545, 69629, 92100, 119616, 152881, 192645, 239704, 294900, 359121, 433301, 518420, 615504, 725625, 849901, 989496, 1145620, 1319529, 1512525, 1725956, 1961216, 2219745
Offset: 1
Keywords
Examples
Some solutions for n=5: ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 ..4....0....2....2....0....5....0....3....5....0....4....5....4....1....1....3 ..1....4....2....2....3....2....2....6....1....5....8...10....8....2....3....5 ..4....3....7....1....2....0....3....5....5....4....6...10....3....6....3....6 ..2....4....5....3....4....3....0....5....2....5....3....5....4....2....4....3 ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A204213.
Formula
Empirical: a(n) = (23/12)*n^4 + (37/6)*n^3 + (91/12)*n^2 + (13/3)*n + 1.
Conjectures from Colin Barker, Jun 06 2018: (Start)
G.f.: x*(21 + 15*x + 14*x^2 - 5*x^3 + x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
Comments