cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204215 Number of length 7 nonnegative integer arrays starting and ending with 0 with adjacent elements differing by no more than n.

Original entry on oeis.org

51, 473, 2208, 7167, 18583, 41363, 82440, 151125, 259459, 422565, 659000, 991107, 1445367, 2052751, 2849072, 3875337, 5178099, 6809809, 8829168, 11301479, 14298999, 17901291, 22195576, 27277085, 33249411, 40224861, 48324808, 57680043
Offset: 1

Views

Author

R. H. Hardin, Jan 12 2012

Keywords

Comments

Row 6 of A204213.

Examples

			Some solutions for n=5:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..3....1....3....3....5....5....4....2....4....4....4....0....4....1....0....3
..5....6....5....4....6....5....2....3....3....8....9....0....3....3....1....5
..4....4....3....3....6....7....4....6....5....7....7....3....6....4....5....5
..5....5....7....2....8....7....4....1....4....4....6....1....5....0....0....2
..3....1....5....0....3....5....0....1....0....0....4....5....2....2....3....1
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
		

Crossrefs

Cf. A204213.

Formula

Empirical: a(n) = (44/15)*n^5 + (133/12)*n^4 + 17*n^3 + (161/12)*n^2 + (167/30)*n + 1.
Conjectures from Colin Barker, Jun 06 2018: (Start)
G.f.: x*(51 + 167*x + 135*x^2 - 6*x^3 + 6*x^4 - x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)