This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204232 #36 Oct 29 2024 06:24:44 %S A204232 3,5,6,7,10,11,12,13,14,17,20,22,23,24,25,26,28,29,31,34,37,40,41,43, %T A204232 44,46,47,48,50,52,53,55,56,58,61,62,67,68,71,73,74,77,80,82,83,86,88, %U A204232 91,92,94,96,97,100,101,104,106,107,110,112,113,115,116,121 %N A204232 Numbers whose binary reversal is prime. %C A204232 Base-2 analog of A095179. %C A204232 If k is a term, then 2*k is a term too. - _Michel Marcus_, Apr 19 2020 %H A204232 Michel Marcus, <a href="/A204232/b204232.txt">Table of n, a(n) for n = 1..1000</a> %e A204232 3, 5 and 7 are in the sequence because their binary reversal, equal to themselves, is prime. %e A204232 a(3)=6 is in the sequence, because 6=110[2] (written in base 2), whose reversal 011[2]=3 is prime. %e A204232 a(5)=11 is in the sequence, because 11=1011[2] (written in base 2), whose reversal 1101[2]=13 is prime. %t A204232 Select[Range[170], PrimeQ[FromDigits[Reverse[IntegerDigits[#, 2]], 2]] &] (* _Alonso del Arte_, Jan 13 2012 *) %o A204232 (PARI) for(n=1,1e2,isprime((t=binary(n))*vector(#t,i,1<<i)~\2) & print1(n",")) %o A204232 (Python) %o A204232 from sympy import isprime %o A204232 def ok(n): return isprime(int(bin(n)[2:][::-1], 2)) %o A204232 print(list(filter(ok, range(1, 122)))) # _Michael S. Branicky_, Sep 06 2021 %o A204232 (Python) # alternate program constructing terms directly from primes %o A204232 from sympy import isprime, primerange %o A204232 def auptobits(maxbits): %o A204232 alst = [] %o A204232 for p in primerange(3, 1<<maxbits): %o A204232 b = bin(p)[2:]; br = b[::-1]; t = int(br, 2) %o A204232 alst.extend(t<<i for i in range(maxbits-len(br)+1)) %o A204232 return sorted(alst) %o A204232 print(auptobits(7)) # _Michael S. Branicky_, Oct 29 2024 %Y A204232 Cf. A030101, A095179. %Y A204232 Positions of 2's in A227864. %K A204232 nonn,base,easy %O A204232 1,1 %A A204232 _M. F. Hasler_, Jan 13 2012