This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204242 #14 Dec 02 2015 11:54:40 %S A204242 1,1,1,1,3,1,1,0,0,1,1,0,7,0,1,1,0,0,0,0,1,1,0,0,15,0,0,1,1,0,0,0,0,0, %T A204242 0,1,1,0,0,0,31,0,0,0,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,63,0,0,0,0,1,1, %U A204242 0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,127,0,0,0,0,0,1,1,0,0,0,0,0 %N A204242 Infinite symmetric matrix given by f(i,1)=1, f(1,j)=1, f(i,i)=2^i-1 and f(i,j)=0 otherwise, read by antidiagonals. %H A204242 Robert Israel, <a href="/A204242/b204242.txt">Table of n, a(n) for n = 1..10000</a> %F A204242 From _Robert Israel_, Nov 30 2015: (Start) %F A204242 a(k*(k+1)/2) = a(1 + k*(k+1)/2) = 1. %F A204242 a(2*k^2 + 2*k + 1) = 2^(k+1) - 1. %F A204242 a(n) = 0 otherwise. (End) %e A204242 Northwest corner: %e A204242 1 1 1 1 %e A204242 1 3 0 0 %e A204242 1 0 7 0 %e A204242 1 0 0 15 %p A204242 N:= 1000: # to get a(1) to a(N) %p A204242 V:= Vector(N): %p A204242 V[[seq(k*(k+1)/2, k= 1..floor((sqrt(8*N+1)-1)/2))]]:= 1: %p A204242 V[[seq(1+k*(k+1)/2, k=1..floor((sqrt(8*N-7)-1)/2))]]:= 1: %p A204242 V[[seq(1+2*k+2*k^2, k=0..floor((sqrt(2*N-1)-1)/2))]]:= %p A204242 <seq(2^(k+1)-1,k=0..floor((sqrt(2*N-1)-1)/2))>: %p A204242 convert(V,list); # _Robert Israel_, Nov 30 2015 %t A204242 f[i_, j_] := 0; f[1, j_] := 1; f[i_, 1] := 1; f[i_, i_] := 2^i - 1; %t A204242 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204242 TableForm[m[8]] (* 8x8 principal submatrix *) %t A204242 Flatten[Table[f[i, n + 1 - i], %t A204242 {n, 1, 12}, {i, 1, n}]] (* A204242 *) %t A204242 Table[Det[m[n]], {n, 1, 15}] (* A204243 *) %t A204242 Permanent[m_] := %t A204242 With[{a = Array[x, Length[m]]}, %t A204242 Coefficient[Times @@ (m.a), Times @@ a]]; %t A204242 Table[Permanent[m[n]], {n, 1, 15}] (* A203011 *) %Y A204242 Cf. A204243, A203011. %K A204242 nonn,tabl %O A204242 1,5 %A A204242 _Clark Kimberling_, Jan 13 2012 %E A204242 Name edited by _Robert Israel_, Nov 30 2015