This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204246 #14 Aug 09 2015 01:05:12 %S A204246 1,1,1,1,1,1,1,0,0,1,1,0,2,0,1,1,0,0,0,0,1,1,0,0,6,0,0,1,1,0,0,0,0,0, %T A204246 0,1,1,0,0,0,24,0,0,0,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,120,0,0,0,0,1,1, %U A204246 0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,720,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0 %N A204246 Array given by f(i,1)=1, f(1,j)=1, f(i,i)=(i-1)!, and f(i,j)=0 otherwise, read by antidiagonals. %e A204246 Northwest corner: %e A204246 1 1 1 1 1 %e A204246 1 1 0 0 0 %e A204246 1 0 2 0 0 %e A204246 1 0 0 6 0 %e A204246 1 0 0 0 14 %p A204246 A204246 := proc(n,m) %p A204246 if n=1 or m =1 then %p A204246 1; %p A204246 elif n = m then %p A204246 (n-1)! ; %p A204246 else %p A204246 0; %p A204246 end if; %p A204246 end proc: %p A204246 seq(seq(A204246(d-m,m),m=1..d-1),d=2..15) ; # _R. J. Mathar_, Jan 21 2012 %t A204246 f[i_, j_] := 0; f[1, j_] := 1; %t A204246 f[i_, 1] := 1; f[i_, i_] := (i - 1)!; %t A204246 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204246 TableForm[m[8]] (* 8x8 principal submatrix *) %t A204246 Flatten[Table[f[i, n + 1 - i], %t A204246 {n, 1, 12}, {i, 1, n}]] (* A204246 *) %t A204246 Table[Det[m[n]], {n, 1, 15}] (* A204247 *) %t A204246 Permanent[m_] := %t A204246 With[{a = Array[x, Length[m]]}, %t A204246 Coefficient[Times @@ (m.a), Times @@ a]]; %t A204246 Table[Permanent[m[n]], {n, 1, 14}] (* A203227 *) %Y A204246 Cf. A204247, A203227. %K A204246 nonn,tabl,easy %O A204246 1,13 %A A204246 _Clark Kimberling_, Jan 13 2012 %E A204246 Terms corrected by _R. J. Mathar_, Jan 21 2012