This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204249 #40 Jun 27 2025 22:12:56 %S A204249 1,2,17,336,12052,685080,56658660,6428352000,958532774976, %T A204249 181800011433600,42745508545320000,12203347213269273600, %U A204249 4158410247782904833280,1667267950805177583582720,776990110000329481864608000,416483579190482716042690560000 %N A204249 Permanent of the n-th principal submatrix of A003057. %C A204249 I have proved that for any odd prime p we have a(p) == p (mod p^2). - _Zhi-Wei Sun_, Aug 30 2021 %H A204249 Vaclav Kotesovec, <a href="/A204249/b204249.txt">Table of n, a(n) for n = 0..36</a> %H A204249 Zhi-Wei Sun, <a href="https://arxiv.org/abs/2108.07723">Arithmetic properties of some permanents</a>, arXiv:2108.07723 [math.GM], 2021. %F A204249 From _Vaclav Kotesovec_, Dec 01 2016: (Start) %F A204249 a(n) ~ c * d^n * (n!)^2 / sqrt(n), where d = A278300 = 2.455407482284127949... and c = 1.41510164826... %F A204249 a(n) ~ c * d^n * n^(2*n + 1/2), where d = A278300/exp(2) = 0.332303267076220516... and c = 8.89134588451... %F A204249 (End) %p A204249 with(LinearAlgebra): %p A204249 a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> i+j))): %p A204249 seq(a(n), n=0..16); # _Alois P. Heinz_, Nov 14 2016 %t A204249 f[i_, j_] := i + j; %t A204249 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204249 TableForm[m[8]] (* 8x8 principal submatrix *) %t A204249 Flatten[Table[f[i, n + 1 - i], %t A204249 {n, 1, 12}, {i, 1, n}]] (* A003057 *) %t A204249 Permanent[m_] := %t A204249 With[{a = Array[x, Length[m]]}, %t A204249 Coefficient[Times @@ (m.a), Times @@ a]]; %t A204249 Table[Permanent[m[n]], {n, 1, 15}] (* A204249 *) %o A204249 (PARI) {a(n) = matpermanent(matrix(n, n, i, j, i+j))} %o A204249 for(n=0, 20, print1(a(n), ", ")) \\ _Vaclav Kotesovec_, Dec 21 2018 %Y A204249 Cf. A000442, A003057, A085750, A085807, A278845, A278847, A278300, A278925, A278926. %K A204249 nonn %O A204249 0,2 %A A204249 _Clark Kimberling_, Jan 14 2012 %E A204249 a(0)=1 prepended and one more term added by _Alois P. Heinz_, Nov 14 2016