A204257 Matrix given by f(i,j)=1+[(i+2j) mod 3], by antidiagonals.
1, 3, 2, 2, 1, 3, 1, 3, 2, 1, 3, 2, 1, 3, 2, 2, 1, 3, 2, 1, 3, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 2, 1, 3, 2, 1, 3, 2, 1, 3, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2
Offset: 1
Examples
Northwest corner: 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2
Crossrefs
Cf. A204258.
Programs
-
Mathematica
f[i_, j_] := 1 + Mod[i + 2 j, 3]; m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] TableForm[m[8]] (* 8x8 principal submatrix *) Flatten[Table[f[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]] (* A204257 *) Permanent[m_] := With[{a = Array[x, Length[m]]}, Coefficient[Times @@ (m.a), Times @@ a]]; Table[Permanent[m[n]], {n, 1, 20}] (* A204258 *)