This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204259 #30 Aug 20 2015 23:03:06 %S A204259 1,2,3,3,1,2,1,2,3,1,2,3,1,2,3,3,1,2,3,1,2,1,2,3,1,2,3,1,2,3,1,2,3,1, %T A204259 2,3,3,1,2,3,1,2,3,1,2,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,3,1, %U A204259 2,3,1,2,3,1,2,3,1,2,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3 %N A204259 Matrix given by f(i,j) = 1 + [(2i+j) mod 3], by antidiagonals. %C A204259 This data is used to specify the height of hexagonally packed cylinders in a triangle with open boundaries. Three cylinders that touch each other define a "triple" and water can be retained between these cylinders. A257594, A258445 and A259052 give a classification for such spaces. The links below ignore the inter-cylinder space retention and only consider the water retention above solid cylinders. - _Craig Knecht_, Jul 16 2015 %H A204259 Craig Knecht, <a href="/A204259/a204259.jpg">Water retention triple.</a> %H A204259 Craig Knecht, <a href="/A204259/a204259_1.jpg">Row sums of numbers completely surrounded by larger numbers (water retention) in A204259 = A008611.</a> %H A204259 Wikipedia, <a href="http://en.wikipedia.org/wiki/Water_retention_on_mathematical_surfaces">Water retention on mathematical surfaces</a> %e A204259 Northwest corner: %e A204259 1 2 3 1 2 3 1 2 %e A204259 3 1 2 3 1 2 3 1 %e A204259 2 3 1 2 3 1 2 3 %e A204259 1 2 3 1 2 3 1 2 %e A204259 3 1 2 3 1 2 3 1 %e A204259 2 3 1 2 3 1 2 3 %t A204259 f[i_, j_] := 1 + Mod[2 i + j, 3]; %t A204259 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204259 TableForm[m[8]] (* 8x8 principal submatrix *) %t A204259 Flatten[Table[f[i, n + 1 - i], %t A204259 {n, 1, 12}, {i, 1, n}]] (* A204259 *) %t A204259 Permanent[m_] := %t A204259 With[{a = Array[x, Length[m]]}, %t A204259 Coefficient[Times @@ (m.a), Times @@ a]]; %t A204259 Table[Permanent[m[n]], {n, 1, 20}] (* A204258 *) %Y A204259 Cf. A204260. %K A204259 nonn,tabl %O A204259 1,2 %A A204259 _Clark Kimberling_, Jan 14 2012