cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204271 a(n) = sigma(n)*Pell(n), where sigma(n) = A000203(n), the sum of divisors of n.

This page as a plain text file.
%I A204271 #10 Jan 06 2018 13:27:34
%S A204271 1,6,20,84,174,840,1352,6120,12805,42804,68892,388080,468454,1938768,
%T A204271 4680600,14595792,20460402,107024190,132502180,671765976,1235646880,
%U A204271 3356004888,5401408344,32600383200,40663881751,133006270404,305814801800
%N A204271 a(n) = sigma(n)*Pell(n), where sigma(n) = A000203(n), the sum of divisors of n.
%C A204271 Compare g.f. to the Lambert series identity: Sum_{n>=1} n*x^n/(1-x^n) = Sum_{n>=1} sigma(n)*x^n.
%H A204271 G. C. Greubel, <a href="/A204271/b204271.txt">Table of n, a(n) for n = 1..1000</a>
%F A204271 G.f.: Sum_{n>=1} n*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} sigma(n)*Pell(n)*x^n, where Pell(n) = A000129(n) and A002203 is the companion Pell numbers.
%e A204271 G.f.: A(x) = x + 6*x^2 + 20*x^3 + 84*x^4 + 174*x^5 + 840*x^6 + 1352*x^7 +...
%e A204271 where A(x) = x/(1-2*x-x^2) + 2*2*x^2/(1-6*x^2+x^4) + 3*5*x^3/(1-14*x^3-x^6) + 4*12*x^4/(1-34*x^4+x^8) + 5*29*x^5/(1-82*x^5-x^10) + 6*70*x^6/(1-198*x^6+x^12) +...+ n*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) +...
%t A204271 Table[DivisorSigma[1, n] Fibonacci[n, 2], {n, 1, 50}] (* _G. C. Greubel_, Jan 05 2018 *)
%o A204271 (PARI) /* Subroutines used in PARI programs below: */
%o A204271 {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}
%o A204271 {A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
%o A204271 (PARI) {a(n)=sigma(n)*Pell(n)}
%o A204271 (PARI) {a(n)=polcoeff(sum(m=1,n,m*Pell(m)*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}
%Y A204271 Cf. A000203 (sigma), A000129, A203848, A204270, A204272, A204273, A204274, A204275, A002203, A000045.
%K A204271 nonn
%O A204271 1,2
%A A204271 _Paul D. Hanna_, Jan 14 2012