This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204274 #15 Mar 25 2019 11:15:27 %S A204274 1,0,0,12,0,0,0,0,985,0,0,0,0,0,0,470832,0,0,0,0,0,0,0,0,1311738121,0, %T A204274 0,0,0,0,0,0,0,0,0,21300003689580,0,0,0,0,0,0,0,0,0,0,0,0, %U A204274 2015874949414289041,0,0,0,0,0,0,0,0,0 %N A204274 G.f.: Sum_{n>=1} Pell(n^2)*x^(n^2). %C A204274 Compare g.f. to the Lambert series identity: Sum_{n>=1} lambda(n)*x^n/(1-x^n) = Sum_{n>=1} x^(n^2); Liouville's function lambda(n) = (-1)^k, where k is number of primes dividing n (counted with multiplicity). %H A204274 Robert Israel, <a href="/A204274/b204274.txt">Table of n, a(n) for n = 1..2500</a> %F A204274 G.f.: Sum_{n>=1} lambda(n)*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)), where lambda(n) = A008836(n), Pell(n) = A000129(n) and A002203 is the companion Pell numbers. %e A204274 G.f.: A(x) = x + 12*x^4 + 985*x^9 + 470832*x^16 + 1311738121*x^25 +... %e A204274 where A(x) = x/(1-2*x-x^2) + (-1)*2*x^2/(1-6*x^2+x^4) + (-1)*5*x^3/(1-14*x^3-x^6) + (+1)*12*x^4/(1-34*x^4+x^8) + (-1)*29*x^5/(1-82*x^5-x^10) + (+1)*70*x^6/(1-198*x^6+x^12) +...+ lambda(n)*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) +... %p A204274 pell:= gfun:-rectoproc({a(0)=0,a(1)=1,a(n)=2*a(n-1)+a(n-2)},a(n),remember): %p A204274 seq(`if`(issqr(n),pell(n),0), n=1..100); # _Robert Israel_, Nov 24 2015 %t A204274 CoefficientList[Sum[Fibonacci[n^2, 2] x^n^2/x, {n, 1, 8}], x] (* _Jean-François Alcover_, Mar 25 2019 *) %o A204274 (PARI) /* Subroutines used in PARI programs below: */ %o A204274 {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)} %o A204274 {A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)} %o A204274 (PARI) {a(n)=issquare(n)*Pell(n)} %o A204274 (PARI) {lambda(n)=local(F=factor(n));(-1)^sum(i=1,matsize(F)[1],F[i,2])} %o A204274 {a(n)=polcoeff(sum(m=1,n,lambda(m)*Pell(m)*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)} %Y A204274 Cf. A204327, A204060, A204270, A204271, A204272, A204273, A204275, A008836 (lambda), A002203, A000045. %K A204274 nonn %O A204274 1,4 %A A204274 _Paul D. Hanna_, Jan 14 2012