cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204293 Pascal's triangle interspersed with rows of zeros, and the rows of Pascal's triangle are interspersed with zeros.

This page as a plain text file.
%I A204293 #21 Feb 16 2025 08:33:16
%S A204293 1,0,0,1,0,1,0,0,0,0,1,0,2,0,1,0,0,0,0,0,0,1,0,3,0,3,0,1,0,0,0,0,0,0,
%T A204293 0,0,1,0,4,0,6,0,4,0,1,0,0,0,0,0,0,0,0,0,0,1,0,5,0,10,0,10,0,5,0,1,0,
%U A204293 0,0,0,0,0,0,0,0,0,0,0,1,0,6,0,15,0,20
%N A204293 Pascal's triangle interspersed with rows of zeros, and the rows of Pascal's triangle are interspersed with zeros.
%C A204293 Auxiliary array for computing Losanitsch's triangle A034851;
%C A204293 T(n, k) + T(n, k + 2) = T(n + 2, k + 2) for k < n - 1.
%H A204293 Reinhard Zumkeller, <a href="/A204293/b204293.txt">Rows n=0..100 of triangle, flattened</a>
%H A204293 S. M. Losanitsch, <a href="/A000602/a000602_1.pdf">Die Isomerie-Arten bei den Homologen der Paraffin-Reihe</a>, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
%H A204293 N. J. A. Sloane, <a href="/classic.html#LOSS">Classic Sequences: Losanitsch's Triangle</a>
%H A204293 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LosanitschsTriangle.html">Losanitsch's Triangle</a>
%H A204293 <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a>
%F A204293 T(n, k) = (1 - n mod 2) * (1 - k mod 2) * binomial(floor(n/2),floor(k/2)).
%t A204293 t[n_?EvenQ, k_?EvenQ] := Binomial[n/2, k/2]; t[_, _] = 0; Flatten[Table[t[n, k], {n, 0, 12}, {k, 0, n}]] (* _Jean-François Alcover_, Feb 07 2012 *)
%o A204293 (Haskell)
%o A204293 a204293 n k = a204293_tabl !! n !! k
%o A204293 a204293_row n = a204293_tabl !! n
%o A204293 a204293_tabl = [1] : [0,0] : f [1] [0,0] where
%o A204293    f xs ys = xs' : f ys xs' where
%o A204293      xs' = zipWith (+) ([0,0] ++ xs) (xs ++ [0,0])
%Y A204293 Cf. A077957 (row sums), A126869 (central terms); A108044, A007318.
%K A204293 nonn,tabl
%O A204293 0,13
%A A204293 _Reinhard Zumkeller_, Jan 14 2012
%E A204293 Formula for T(n,k) corrected by _Peter Bala_, Jul 06 2015