A204421 Symmetric matrix: f(i,j)=(i+j+2 mod 3), by antidiagonals.
1, 2, 2, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1
Examples
Northwest corner: 1 2 0 1 2 0 2 0 1 2 0 1 0 1 2 0 1 2 1 2 0 1 2 0 2 0 1 2 0 1 0 1 2 0 1 2
Programs
-
Mathematica
f[i_, j_] := Mod[i + j + 2, 3]; m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] TableForm[m[8]] (* 8x8 principal submatrix *) Flatten[Table[f[i, n + 1 - i], {n, 1, 14}, {i, 1, n}]] (* A204421 *) Permanent[m_] := With[{a = Array[x, Length[m]]}, Coefficient[Times @@ (m.a), Times @@ a]]; Table[Permanent[m[n]], {n, 1, 22}] (* A179079 *)
Comments