A204427 Infinite matrix: f(i,j)=(2i+j+2 mod 3), read by antidiagonals.
2, 0, 1, 1, 2, 0, 2, 0, 1, 2, 0, 1, 2, 0, 1, 1, 2, 0, 1, 2, 0, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 1, 2, 0, 1, 2, 0, 1, 2, 0, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1
Offset: 1
Examples
Northwest corner: 2 0 1 2 0 1 1 2 0 1 2 0 0 1 2 0 1 2 2 0 1 2 0 1 1 2 0 1 2 0 0 1 2 0 1 2
Programs
-
Mathematica
f[i_, j_] := Mod[2 i + j + 2, 3]; m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] TableForm[m[8]] (* 8x8 principal submatrix *) Flatten[Table[f[i, n + 1 - i], {n, 1, 14}, {i, 1, n}]] (* A204427 *) Permanent[m_] := With[{a = Array[x, Length[m]]}, Coefficient[Times @@ (m.a), Times @@ a]]; Table[Permanent[m[n]], {n, 1, 22}] (* A204428 *)
Comments