A204431 Symmetric matrix: f(i,j)=(2i+j+1 mod 3), by antidiagonals.
2, 1, 1, 0, 0, 0, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
Northwest corner: 2 1 0 2 1 0 1 0 2 1 0 2 0 2 1 0 2 1 2 1 0 2 1 0 1 0 2 1 0 2 0 2 1 0 2 1
Programs
-
Mathematica
f[i_, j_] := Mod[2 i + 2 j + 1, 3]; m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] TableForm[m[8]] (* 8x8 principal submatrix *) Flatten[Table[f[i, n + 1 - i], {n, 1, 14}, {i, 1, n}]] (* A204431 *) Permanent[m_] := With[{a = Array[x, Length[m]]}, Coefficient[Times @@ (m.a), Times @@ a]]; Table[Permanent[m[n]], {n, 1, 22}] (* A204432 *)
Comments