A204433 Symmetric matrix: f(i,j) = (2*i + 2*j + 2) mod 3, by antidiagonals.
0, 2, 2, 1, 1, 1, 0, 0, 0, 0, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1
Examples
Northwest corner: 0 2 1 0 2 1 2 1 0 2 1 0 1 0 2 1 0 2 0 2 1 0 2 1 2 1 0 2 1 0 1 0 2 1 0 2
Programs
-
Mathematica
f[i_, j_] := Mod[2 i + 2 j + 2, 3]; m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] TableForm[m[8]] (* 8x8 principal submatrix *) Flatten[Table[f[i, n + 1 - i], {n, 1, 14}, {i, 1, n}]]
Extensions
Definition corrected by Georg Fischer, Oct 25 2021
Comments