This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204450 #10 Mar 30 2012 18:49:34 %S A204450 0,2,6,17,30,177,417,1857,4302,19457,47731,203777,509769,2134017, %T A204450 5462701,22347777,58104062,234029057,616919457,2450784257,6533317815, %U A204450 25664946177,69085604341,268766806017,729558799305,2814562533377 %N A204450 2*A203579 - A204449. Difference between the exponential convolution of A000032 (Lucas) with itself and the corresponding exponential half-convolution. %C A204450 See A204449 for the exponential half-convolution of A000032 (Lucas). The present sequence gives the numbers to be added to A204449 to obtain the corresponding (full) exponential convolution A203579. %F A204450 a(n) = sum(binomial(n,k)*L(k)*L(n-k),k=floor(n/2)+1..n), n>=0, %F A204450 with the Lucas numbers L(n)=A000032(n). For n=0 this is 0. %F A204450 E.g.f.: exp(x)*(cosh(sqrt(5)*x)+1) - (BesselI(0,2*phi*x) + BesselI(0,2*(phi-1)*x) + 2*BesselI(0,2*I*x))/2. Compare this with the e.g.f. of A204449, where phi and BesselI are explained. %F A204450 Bisection: a(2*k) = (2^(2*k)-binomial(2*k,k))*L(2*k)/2 + 1 - ((-1)^k)*binomial(2*k,k), a(2*k+1) = 2^(2*k)*L(2*k+1)+ 1 = A204449(2*k+1), k>=0. %e A204450 With A000032 = {2, 1, 3, 4, 7, 11, ...} %e A204450 a(4) = 4*4*1 + 1*7*2 = 30. %e A204450 a(5) = 10*4*3 + 5*7*1 + 1*11*2 = 177. %Y A204450 Cf. A000032, A203579, A204449. %K A204450 nonn %O A204450 0,2 %A A204450 _Wolfdieter Lang_, Jan 16 2012