cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204451 2*A014335 - A203578. Difference of the exponential convolution of A000045 (Fibonacci) with itself and the corresponding exponential half-convolution.

Original entry on oeis.org

0, 0, 0, 3, 8, 35, 75, 371, 888, 3891, 9445, 40755, 102323, 426803, 1091167, 4469555, 11625960, 46805811, 123364443, 490156851, 1306737465, 5132989235, 13816838695, 53753361203, 145912841523, 562912506675, 1539304050375, 5894896300851, 16225419029303, 61732155503411, 170909837010835
Offset: 0

Views

Author

Wolfdieter Lang, Jan 16 2012

Keywords

Comments

See A203578 for the exponential (or binomial) half-convolution of A000045 (Fibonacci). The present sequence has to be added to this sequence in order to obtain the (full) exponential convolution 2*A014335.

Crossrefs

Formula

a(n) = sum(binomial(n,k)*F(k)*F(n-k), k=floor(n/2)+1..n), n>=0, with the Fibonacci numbers A000045(n).
E.g.f.: exp(x)*(cosh((2*phi-1)*x)-1)/5 - (BesselI(0,2*phi*x) + BesselI(0,2*(phi-1)*x) - 2*BesselI(0,2*I*x))/10. See the e.g.f. of A203578, also for phi and BesselI.
Bisection: a(2*k) =((2^(2*k) - binomial(2*k,k))*L(2*k)/2 - (1 - (-1)^k*binomial(2*k,k)))/5 and a(2*k+1) = (2^(2*k)*L(2*k+1) - 1)/5 = A203578(2*k), k>=0, with the Lucas numbers L(n)= A000032(n). Compare with A203578. See A000346(k-1), with A000346(-1)=0, for (2^(2*k) - binomial(2*k,k))/2, k>=0.