cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204456 Coefficient array of numerator polynomials of the o.g.f.s for the sequence of odd numbers not divisible by a given prime.

This page as a plain text file.
%I A204456 #17 Sep 01 2018 21:30:05
%S A204456 1,1,1,4,1,1,2,4,2,1,1,2,2,4,2,2,1,1,2,2,2,2,4,2,2,2,2,1,1,2,2,2,2,2,
%T A204456 4,2,2,2,2,2,1,1,2,2,2,2,2,2,2,4,2,2,2,2,2,2,2,1,1,2,2,2,2,2,2,2,2,4,
%U A204456 2,2,2,2,2,2,2,2,1,1,2,2,2,2,2,2,2,2,2,2,4,2,2,2,2,2,2,2,2,2,2,1
%N A204456 Coefficient array of numerator polynomials of the o.g.f.s for the sequence of odd numbers not divisible by a given prime.
%C A204456 The row length sequence of this array is p(m) = A000040(m) (the primes).
%C A204456 Row m, for m >= 1, lists the coefficients of the numerator polynomials N(p(m);x) = Sum_{k=0..p(m)-1} a(m,k)*x^k for the o.g.f. G(p(m);x) = x*N(p(m);x)/((1-x^(p(m)-1))*(1-x)) for the sequence a(p(m);n) of odd numbers not divisible by p(n). For m=1 one has a(2;n)=2*n-1, n >= 1, and for m > 1 one has a(p(m);n) = 2*n+1 + floor((n-(p(m)+1)/2)/(p(m)-1)), n >= 1, and a(p(m);0):=0. See A204454 for the m=5 sequence a(11;n), also for more details.
%C A204456 The rows of this array are symmetric. For m > 1 they are symmetric around the central 4.
%C A204456 The first (p(m)+1)/2 numbers of row number m, for m >= 2, are given by the first differences of the corresponding sequence {a(p(m);n)}, with a(p(m),0):=0. See a formula below. The proof is trivial for m=1, and clear for m >= 2 from a(p(m);n), for n=0,...,(p(m)+1)/2, which is {0,1,3,...,p-2,p+2}. - _Wolfdieter Lang_, Jan 26 2012
%F A204456 a(m,k) = [x^k]N(p(m);x), m>=1, k=0,...,p(m)-1, with the numerator polynomial N(p(m);x) for the o.g.f. G(p(m);x) of the sequence of odd numbers not divisible by the m-th prime p(m)=A000040(m). See the comment above.
%F A204456 Row m has the number pattern (exponents on a number indicate how many times this number appears consecutively):
%F A204456   m=1, p(1)=2: 1 1, and for m>=2:
%F A204456   m, p(m): 1 2^((p(m)-3)/2) 4 2^((p(m)-3)/2) 1.
%F A204456 a(m,k) = a(p(m);k+1) - a(p(m);k), m>=2, k=0,...,(p(m)-1)/2,
%F A204456 with the corresponding sequence {a(p(m);n)} of the odd numbers not divisible by p(m), with a(p(m);0):=0. For m=1: a(1,0) = a(2;1)-a(2;0). By symmetry around the center: a(m,(p(m)-1)/2+k) = a(m,(p(m)-1)/2-k), k=1,...,(p(m)-1)/2, m>=2. For m=1: a(1,1)=a(1,0). See a comment above. - _Wolfdieter Lang_, Jan 26 2012
%e A204456 The array starts
%e A204456 m,p\k  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 ...
%e A204456 1,2:   1  1
%e A204456 2,3:   1  4  1
%e A204456 3,5:   1  2  4  2  1
%e A204456 4,7:   1  2  2  4  2  2  1
%e A204456 5,11:  1  2  2  2  2  4  2  2  2  2  1
%e A204456 6,13:  1  2  2  2  2  2  4  2  2  2  2  2  1
%e A204456 7,17:  1  2  2  2  2  2  2  2  4  2  2  2  2  2  2  2  1
%e A204456 ...
%e A204456 N(p(4);x) = N(7;x) = 1 + 2*x + 2*x^2 + 4*x^3 + 2*x^4 + 2*x^5 + x^6 = (1+x^2)*(1+2*x+x^2+2*x^3+x^4).
%e A204456 G(p(4);x) = G(7;x) = x*N(7;x)/((1-x^6)*(1-x)), the o.g.f. of
%e A204456 A162699. Compare this with the o.g.f. given there by _R. J. Mathar_, where the numerator is factorized also.
%e A204456 First difference rule: m=4: {a(7;n)} starts {0,1,3,5,9,...},
%e A204456 the first differences are {1,2,2,4,...}, giving the first (7+1)/2=4 entries of row number m=4 of the array. The other entries follow by symmetry. - _Wolfdieter Lang_, Jan 26 2012
%Y A204456 Cf. A000040, A005408 (p=2), A007310 (p=3), A045572 (p=5), A162699 (p=7), A204454 (p=11).
%K A204456 nonn,easy,tabf
%O A204456 1,4
%A A204456 _Wolfdieter Lang_, Jan 24 2012