This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A204461 #13 Dec 07 2020 02:07:42 %S A204461 1,1,5,25,177,1394,11963,108108,1016737,9853759,97809616,989878326, %T A204461 10180316707,106124695130,1119148085092,11920389375524, %U A204461 128077285062639,1386689101261013,15115933170815361,165776800325379769,1828006462946421194,20256667860779557632 %N A204461 Number of n-element subsets that can be chosen from {1,2,...,5*n} having element sum n*(5*n+1)/2. %C A204461 a(n) is the number of partitions of n*(5*n+1)/2 into n distinct parts <=5*n. %H A204461 Alois P. Heinz, <a href="/A204461/b204461.txt">Table of n, a(n) for n = 0..100</a> %e A204461 a(2) = 5 because there are 5 2-element subsets that can be chosen from {1,2,...,10} having element sum 11: {1,10}, {2,9}, {3,8}, {4,7}, {5,6}. %p A204461 b:= proc(n, i, t) option remember; %p A204461 `if`(i<t or n<t*(t+1)/2 or n>t*(2*i-t+1)/2, 0, %p A204461 `if`(n=0, 1, b(n, i-1, t) +`if`(n<i, 0, b(n-i, i-1, t-1)))) %p A204461 end: %p A204461 a:= n-> b(n*(5*n+1)/2, 5*n, n): %p A204461 seq(a(n), n=0..20); %t A204461 b[n_, i_, t_] /; i<t || n<t(t+1)/2 || n>t(2i-t+1)/2 = 0; b[0, _, _] = 1; %t A204461 b[n_, i_, t_] := b[n, i, t] = b[n, i-1, t] + If[n<i, 0, b[n-i, i-1, t-1]]; %t A204461 a[n_] := b[n(5n+1)/2, 5n, n]; %t A204461 a /@ Range[0, 20] (* _Jean-François Alcover_, Dec 07 2020, after _Alois P. Heinz_ *) %Y A204461 Row n=5 of A204459. %K A204461 nonn %O A204461 0,3 %A A204461 _Alois P. Heinz_, Jan 18 2012